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9. QUANTUM CHROMODYNAMICS

9.1. The QCD Lagrangian

Revised September 1999 by I. Hinchliffe (LBNL).

Quantum Chromodynamics (QCD), the gauge field theory which
describes the strong interactions of colored quarks and gluons, is one
of the components of the SU(3)×SU(2)×U(1) Standard Model. A
quark of specific flavor (such as a charm quark) comes in 3 colors;
gluons come in eight colors; hadrons are color-singlet combinations
of quarks, anti-quarks, and gluons. The Lagrangian describing the
interactions of quarks and gluons is (up to gauge-fixing terms)

LQCD = −1
4
F

(a)
µν F (a)µν + i

∑
q

ψiq γ
µ (Dµ)ij ψjq

−
∑
q

mq ψ
i
q ψqi , (9.1)

F
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µν = ∂µ A

a
ν − ∂ν Aaµ + gs fabc A

b
µ A

c
ν , (9.2)

(Dµ)ij = δij ∂µ − igs
∑
a

λai,j
2
Aaµ , (9.3)

where gs is the QCD coupling constant, and the fabc are the structure
constants of the SU(3) algebra (the λ matrices and values for fabc can
be found in “SU(3) Isoscalar Factors and Representation Matrices,”
Sec. 32 of this Review). The ψiq(x) are the 4-component Dirac spinors
associated with each quark field of (3) color i and flavor q, and the
Aaµ(x) are the (8) Yang-Mills (gluon) fields. A complete list of the
Feynman rules which derive from this Lagrangian, together with some
useful color-algebra identities, can be found in Ref. 1.

The principle of “asymptotic freedom” (see below) determines that
the renormalized QCD coupling is small only at high energies, and
it is only in this domain that high-precision tests—similar to those
in QED—can be performed using perturbation theory. Nonetheless,
there has been in recent years much progress in understanding and
quantifying the predictions of QCD in the nonperturbative domain, for
example, in soft hadronic processes and on the lattice [2]. This short
review will concentrate on QCD at short distances (large momentum
transfers), where perturbation theory is the standard tool. It will
discuss the processes that are used to determine the coupling constant
of QCD. Other recent reviews of the coupling constant measurements
may be consulted for a different perspective [3,4].

9.2. The QCD coupling and renormalization scheme

The renormalization scale dependence of the effective QCD coupling
αs = g2

s/4π is controlled by the β-function:

µ
∂αs
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= −β0

2π
α2
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4π2 α
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64π3 α
4
s − · · · , (9.4a)

β0 = 11− 2
3
nf , (9.4b)

β1 = 51− 19
3
nf , (9.4c)

β2 = 2857− 5033
9

nf +
325
27

n2
f ; (9.4d)

where nf is the number of quarks with mass less than the energy
scale µ. The expression for the next term in this series (β3) can be
found in Ref. 5. In solving this differential equation for αs, a constant
of integration is introduced. This constant is the one fundamental
constant of QCD that must be determined from experiment. The most
sensible choice for this constant is the value of αs at a fixed-reference
scale µ0. It has become standard to choose µ0 = MZ . It is also
convenient to introduce the dimensional parameter Λ, since this
provides a parameterization of the µ dependence of αs. The definition
of Λ is arbitrary. One way to define it (adopted here) is to write a
solution of Eq. (9.4) as an expansion in inverse powers of ln (µ2):
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. (9.5a)

The last term in this expansion is

O
(

ln2 [ln (µ2/Λ2)]
ln3 (µ2/Λ2)

)
, (9.5b)

and is usually neglected in the definition of Λ. We choose to include
it. For a fixed value of αs(MZ), the inclusion of this term shifts the
value of Λ by ∼ 15 MeV. This solution illustrates the asymptotic
freedom property: αs → 0 as µ→∞.

Consider a “typical” QCD cross section which, when calculated
perturbatively, starts at O(αs):

σ = A1 αs +A2 α
2
s + · · · . (9.6)

The coefficients A1, A2 come from calculating the appropriate Feynman
diagrams. In performing such calculations, various divergences arise,
and these must be regulated in a consistent way. This requires a
particular renormalization scheme (RS). The most commonly used one
is the modified minimal subtraction (MS) scheme [6]. This involves
continuing momentum integrals from 4 to 4–2ε dimensions, and then
subtracting off the resulting 1/ε poles and also (ln 4π − γE), which
is another artifact of continuing the dimension. (Here γE is the
Euler-Mascheroni constant.) To preserve the dimensionless nature of
the coupling, a mass scale µ must also be introduced: g → µεg. The
finite coefficients Ai (i ≥ 2) thus obtained depend implicitly on the
renormalization convention used and explicitly on the scale µ.

The first two coefficients (β0, β1) in Eq. (9.4) are independent of
the choice of RS’s. In contrast, the coefficients of terms proportional
to αns for n > 3 are RS-dependent. The form given above for β2 is in
the MS scheme.

The fundamental theorem of RS dependence is straightforward.
Physical quantities, in particular the cross section, calculated to all
orders in perturbation theory, do not depend on the RS. It follows that
a truncated series does exhibit RS dependence. In practice, QCD cross
sections are known to leading order (LO), or to next-to-leading order
(NLO), or in a few cases, to next-to-next-to-leading order (NNLO);
and it is only the latter two cases, which have reduced RS dependence,
that are useful for precision tests. At NLO the RS dependence is
completely given by one condition which can be taken to be the value
of the renormalization scale µ. At NNLO this is not sufficient, and
µ is no longer equivalent to a choice of scheme; both must now be
specified. One, therefore, has to address the question of what is the
“best” choice for µ within a given scheme, usually MS. There is no
definite answer to this question—higher-order corrections do not “fix”
the scale, rather they render the theoretical predictions less sensitive
to its variation.

One should expect that choosing a scale µ characteristic of the
typical energy scale (E) in the process would be most appropriate.
In general, a poor choice of scale generates terms of order ln (E/µ)
in the Ai’s. Various methods have been proposed including choosing
the scale for which the next-to-leading-order correction vanishes
(“Fastest Apparent Convergence [7]”); the scale for which the next-to-
leading-order prediction is stationary [8], (i.e., the value of µ where
dσ/dµ = 0); or the scale dictated by the effective charge scheme [9] or
by the BLM scheme [10]. By comparing the values of αs that different
reasonable schemes give, an estimate of theoretical errors can be
obtained. It has also been suggested to replace the perturbation series
by its Pade approximant [11]. Results obtained using this method
have, in certain cases, a reduced scale dependence [12,13]. One can
also attempt to determine the scale from data by allowing it to vary
and using a fit to determine it. This method can allow a determination
of the error due to the scale choice and can give more confidence in
the end result [14]. In many of the cases discussed below this scale
uncertainty is the dominant error.

An important corollary is that if the higher-order corrections are
naturally small, then the additional uncertainties introduced by the µ
dependence are likely to be small. There are some processes, however,
for which the choice of scheme can influence the extracted value of
αs(MZ). There is no resolution to this problem other than to try to
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calculate even more terms in the perturbation series. It is important
to note that, since the perturbation series is an asymptotic expansion,
there is a limit to the precision with which any theoretical quantity can
be calculated. In some processes, the highest-order perturbative terms
may be comparable in size to nonperturbative corrections (sometimes
called higher-twist or renormalon effects, for a discussion see [15]); an
estimate of these terms and their uncertainties is required if a value of
αs is to be extracted.

Cases occur where there is more than one large scale, say µ1 and
µ2. In these cases, terms appear of the form log(µ1/µ2). If the ratio
µ1/µ2 is large, these logarithms can render naive perturbation theory
unreliable and a modified perturbation expansion that takes these
terms into account must be used. A few examples are discussed below.

In the cases where the higher-order corrections to a process are
known and are large, some caution should be exercised when quoting
the value of αs. In what follows, we will attempt to indicate the size
of the theoretical uncertainties on the extracted value of αs. There
are two simple ways to determine this error. First, we can estimate it
by comparing the value of αs(µ) obtained by fitting data using the
QCD formula to highest known order in αs, and then comparing it
with the value obtained using the next-to-highest-order formula (µ is
chosen as the typical energy scale in the process). The corresponding
Λ’s are then obtained by evolving αs(µ) to µ = MZ using Eq. (9.4) to
the same order in αs as the fit. Alternatively, we can vary the value
of µ over a reasonable range, extracting a value of Λ for each choice of
µ. This method is by its nature imprecise, since “reasonable” involves
a subjective judgment. In either case, if the perturbation series is well
behaved, the resulting error on αs(MZ) will be small.

In the above discussion we have ignored quark-mass effects, i.e., we
have assumed an idealized situation where quarks of mass greater than
µ are neglected completely. In this picture, the β-function coefficients
change by discrete amounts as flavor thresholds (a quark of mass M)
are crossed when integrating the differential equation for αs. Now
imagine an experiment at energy scale µ; for example, this could be
e+e− → hadrons at center-of-mass energy µ. If µ � M , the mass
M is negligible and the process is well described by QCD with nf
massless flavors and its parameter α(nf ) up to terms of order M2/µ2.
Conversely if µ�M , the heavy quark plays no role and the process is
well described by QCD with nf − 1 massless flavors and its parameter
α(nf−1) up to terms of order µ2/M2. If µ ∼ M , the effects of the
quark mass are process-dependent and cannot be absorbed into the
running coupling. The values of α(nf ) and α(nf−1) are related so
that a physical quantity calculated in both “theories” gives the same
result [16]. This implies

α(nf )(M) = α(nf−1)(M)− 7
72π2

α2
(nf−1)(M) (9.7)

which is almost identical to the naive result α(nf )(M) = α(nf−1)(M).
Here M is the mass of the value of the running quark mass defined
in the MS scheme (see the note on “Quark Masses” in the Particle
Listings for more details), i.e., where MMS(M) = M .

It also follows that, for a relationship such as Eq. (9.5) to remain
valid for all values of µ, Λ must also change as flavor thresholds are
crossed, the value corresponds to an effective number of massless
quarks: Λ → Λ(nf ) [16,17]. The formulae are given in the previous
edition of this review.

An alternative matching procedure can be used [18]. This
procedure requires the equality αs(µ)(nf ) = αs(µ)(nf−1) for µ = M .
This matching is somewhat arbitrary; a different relation between
Λ(nf ) and Λ(nf−1) would result if µ = M/2 were used. In practice, the
differences between these procedures are very small. Λ(5) = 200 MeV
corresponds to Λ(4) = 289 MeV in the scheme of Ref. 18 and
Λ(4) = 280 MeV in the scheme we adopt. Note that the differences
between Λ(5) and Λ(4) are numerically very significant.

Data from deep-inelastic scattering are in a range of energy where
the bottom quark is not readily excited, and hence, these experiments
quote Λ

(4)

MS . Most data from PEP, PETRA, TRISTAN, LEP, and

SLC quote a value of Λ
(5)

MS since these data are in an energy range

where the bottom quark is light compared to the available energy. We
have converted it to Λ

(4)

MS as required. A few measurements, including
the lattice gauge theory values from the Jψ system, and from τ decay
are at sufficiently low energy that Λ

(3)

MS is appropriate.
In order to compare the values of αs from various experiments,

they must be evolved using the renormalization group to a common
scale. For convenience, this is taken to be the mass of the Z boson.
This evolution uses third-order perturbation theory and can introduce
additional errors particularly if extrapolation from very small scales
is used. The variation in the charm and bottom quark masses
(mb = 4.3 ± 0.2 GeV and mc = 1.3 ± 0.3 GeV are used) can also
introduce errors. These result in a fixed value of αs(2 GeV) giving
an uncertainty in αs(MZ) = ±0.001 if only perturbative evolution is
used. There could be additional errors from nonperturbative effects
that enter at low energy.

9.3. QCD in deep-inelastic scattering

The original and still one of the most powerful quantitative tests of
perturbative QCD is the breaking of Bjorken scaling in deep-inelastic
lepton-hadron scattering. In the leading-logarithm approximation,
the measured structure functions Fi(x,Q2) are related to the quark
distribution functions qi(x,Q2) according to the naive parton model,
by the formulae in “Cross-section Formulae for Specific Processes,”
Sec. 35 of this Review. (In that section, qi is denoted by the notation
fq). In describing the way in which scaling is broken in QCD, it is
convenient to define nonsinglet and singlet quark distributions:

FNS = qi − qj FS =
∑
i

(qi + qi) . (9.8)

The nonsinglet structure functions have nonzero values of flavor
quantum numbers such as isospin or baryon number. The variation
with Q2 of these is described by the so-called DGLAP equations [19,20]:

Q2 ∂F
NS

∂Q2 =
αs(|Q|)

2π
P qq ∗ FNS (9.9a)

Q2 ∂

∂Q2

(
FS

G

)
=
αs(|Q|)

2π

(
P qq

P gq

2nfP qg

P gg

)
∗
(
FS

G

)
(9.9b)

where ∗ denotes a convolution integral:

f ∗ g =
∫ 1

x

dy

y
f(y) g

(
x

y

)
. (9.10)

The leading-order Altarelli-Parisi [20] splitting functions are

P qq =
4
3

[
1 + x2

(1− x)+

]
+ 2δ(1− x) , (9.11a)

P qg =
1
2

[
x2 + (1− x)2

]
, (9.11b)

P gq =
4
3

[
1 + (1− x)2

x

]
, (9.11c)

P gg = 6
[

1− x
x

+ x(1− x) +
x

(1− x)+
+

11
12
δ(1− x)

]
−
nf
3
δ(1− x) . (9.11d)

Here the gluon distribution G(x,Q2) has been introduced and
1/(1− x)+ means∫ 1

0
dx

f(x)
(1− x)+

=
∫ 1

0
dx

f(x)− f(1)
(1− x)

. (9.12)

The precision of contemporary experimental data demands that
higher-order corrections also be included [21]. The above results are
for massless quarks. At low Q2 values, there are also important
“higher-twist” (HT) contributions of the form:

Fi(x,Q2) = F
(LT )
i (x,Q2) +

F
(HT )
i (x,Q2)

Q2
+ · · · . (9.13)



9. Quantum chromodynamics 87

Leading twist (LT) indicates a term whose behavior is predicted by
perturbative QCD. These corrections are numerically important only
for Q2<O(few GeV2) except for x very close to 1. At very large
values of x perturbative corrections proportional to log(1 − x) can
become important [22].

A detailed review of the current status of the experimental data can
be found, for example, in Refs. [23–26], and only a brief summary will
be presented here. We shall only include determinations of Λ from the
recently published results; the earlier editions of this Review should
be consulted for the earlier data. Data now exist from HERA at much
smaller values of x than the fixed-target data. They provide valuable
information about the shape of the antiquark and gluon distribution
functions at x ∼ 10−4 [27].

From Eq. (9.9), it is clear that a nonsinglet structure function
offers in principle the most precise test of the theory, since the Q2

evolution is independent of the unmeasured gluon distribution. The
CCFR collaboration fit to the Gross-Llewellyn Smith sum rule [28]
which is known to order α3

s [29,30](Estimates of the order α4
s term are

available [31])∫ 1

0
dx
(
F νp3 (x,Q2) + F νp3 (x,Q2)

)
=

3
[
1− αs

π
(1 + 3.58

αs
π

+ 19.0
(αs
π

)2
)
−∆HT

]
, (9.14)

where the higher-twist contribution ∆HT is estimated to be
(0.09 ± 0.045)/Q2 in Refs. [29,32] and to be somewhat smaller
by Ref. 33. The CCFR collaboration [35], combines their data
with that from other experiments [36] and gives αs (

√
3 GeV) =

0.28 ± 0.035 (expt.) ± 0.05 (sys)+0.035
−0.03 (theory). The error from

higher-twist terms (assumed to be ∆HT = 0.05 ± 0.05) dominates
the theoretical error. If the higher twist result of Ref. 33 is used, the
central value increases to 0.31 in agreement with the fit of [37]. This
value corresponds to αs(MZ) = 0.118± 0.011.

Measurements involving singlet-dominated structure functions, such
as F2, result in measurements of αs and the gluon structure function.
A full next-to-leading-order fit combining date from SLAC [38],
BCDMS [39], E665 [40] and HERA [27] has been performed by
Ref. 41. These authors extend the analysis to next-to-next-to-leading
order (NNLO). In this case the full theoretical calculation is not
available as not all the three loop anomalous dimensions are known;
their analysis uses moments of structure functions and is restricted
to those moments where the full calculation is available [21,42,37].
The NNLO result is αs(MZ) = 0.1172± 0.0017 (expt.)± 0.0017 (sys).
Here the first error is a combination of statistical and systematic
experimental errors, and the second error is due to the uncertainties
in the quark masses, higher twist and target mass corrections, and
errors from the gluon distribution. If only a next-to-leading-order fit is
performed then the value decreases to αs(MZ) = 0.116 indicating that
the theoretical results are stable. Scale uncertainties are not included.
This result is consistent with earlier determinations [43,44,45]. The
second of these authors estimated the scale uncertainty at ±0.004
when a NLO fit was used. The error of Ref. 41 should be increased
to take account of the possible scale error. We will therefore use
αs(MZ) = 0.1172± 0.0045 in the final average.

The spin-dependent structure functions, measured in polarized
lepton-nucleon scattering, can also be used to test QCD and
to determine αs. Here the values of Q2 ∼ 2.5 GeV2 are small,
particularly for the E143 data [49], and higher-twist corrections are
important. A fit [46] using the measured spin dependent structure
functions for several experiments themselves from Refs. [48,49] gives
αs(MZ) = 0.121± 0.002(expt.) ± 0.006(theory and syst.). Data from
HERMES [50] are not included in this fit; they are consistent with the
older data. αs can also be determined from the Bjorken sum rule [51];
a fit gives [47] αs(MZ) = 0.118+0.010

−0.024; consistent with an earlier
determination [52], the larger error being due to the extrapolation
into the (unmeasured) small x region. Theoretically, the sum rule
is preferable as the perturbative QCD result is known to higher
order and these terms are important at the low Q2 involved. It has
been shown that the theoretical errors associated with the choice of
scale are considerably reduced by the use of Pade approximants [12]

which results in αs(1.7 GeV) = 0.328± 0.03(expt.) ± 0.025(theory)
corresponding to αs(MZ) = 0.116+0.003

−0.005(expt.) ± 0.003(theory). No
error is included from the extrapolation into the region of x that is
unmeasured. Should data become available at smaller values of x so
that this extrapolation could be more tightly constrained, the sum
rule method could provide the best determination of αs; the result
from the structure functions themselves is used in the average.

At very small values of x and Q2, the x and Q2 dependence
of the structure functions is predicted by perturbative QCD [53].
Here terms to all orders in αs ln(1/x) are summed. The data from
HERA [27] on F ep2 (x,Q2) can be fitted to this form [54], including
the NLO terms which are required to fix the Q2 scale. The data
are dominated by 4 GeV2 < Q2 < 100 GeV2. The fit [55] using H1
data [56] gives αs(MZ) = 0.122±0.004 (expt.)±0.009 (theory). (The
theoretical error is taken from Ref. 54.) The dominant part of the
theoretical error is from the scale dependence; errors from terms that
are suppressed by 1/ log(1/x) in the quark sector are included [57]
while those from the gluon sector are not.

Typically, Λ is extracted from the deep inelastic scattering data
by parameterizing the parton densities in a simple analytic way
at some Q2

0, evolving to higher Q2 using the next-to-leading-order
evolution equations, and fitting globally to the measured structure
functions to obtain Λ

(4)

MS . Thus, an important by-product of such
studies is the extraction of parton densities at a fixed-reference value
of Q2

0. These can then be evolved in Q2 and used as input for
phenomenological studies in hadron-hadron collisions (see below).
To avoid having to evolve from the starting Q2

0 value each time, a
parton density is required; it is useful to have available a simple
analytic approximation to the densities valid over a range of x and Q2

values. A package is available from the CERN computer library that
includes an exhaustive set of fits [58]. Most of these fits are obsolete.
In using a parameterization to predict event rates, a next-to-leading
order fit must be used if the process being calculated is known to
next-to-leading order in QCD perturbation theory. In such a case,
there is an additional scheme dependence; this scheme dependence is
reflected in the O(αs) corrections that appear in the relations between
the structure functions and the quark distribution functions. There
are two common schemes: a deep-inelastic scheme where there are no
order αs corrections in the formula for F2(x,Q2) and the minimal
subtraction scheme. It is important when these next-to-leading order
fits are used in other processes (see below), that the same scheme
is used in the calculation of the partonic rates. Most current sets
of parton distributions are obtained using fits to all relevant event
data [59]. In particular, data from purely hadronic initial states
are used as they can provide important constraints on the gluon
distributions.

9.4. QCD in decays of the τ lepton

The semi-leptonic branching ratio of the tau (τ → ντ + hadrons,
Rτ ) is an inclusive quantity. It is related to the contribution of
hadrons to the imaginary part of the W self energy

(
Π(s)

)
. It is

sensitive to a range of energies since it involves an integral

Rτ ∼
∫ m2

τ

0

ds

m2
τ

(1− s

m2
τ

)2 Im (Π(s)) .

Since the scale involved is low, one must take into account
nonperturbative (higher-twist) contributions which are suppressed by
powers of the τ mass.

Rτ =3.058
[
1 +

αs(mτ )
π

+ 5.2
(αs(mτ )

π

)2
+ 26.4

(αs(mτ )
π

)3

+ a
m2

m2
τ

+ b
mψψ

m4
τ

+ c
ψψψψ

m6
τ

+ · · ·
]
. (9.15)

Here a, b, and c are dimensionless constants and m is a light quark
mass. The term of order 1/m2

τ is a kinematical effect due to the light
quark masses and is consequently very small. The nonperturbative
terms are estimated using sum rules [60]. In total, they are estimated
to be −0.014± 0.005 [61,62]. This estimate relies on there being no
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Figure 9.1: Summary of the values of αs(MZ) and Λ(5) from
various processes. The values shown indicate the process and
the measured value of αs extrapolated up to µ = MZ . The error
shown is the total error including theoretical uncertainties.

term of order Λ2/m2
τ

(
note that

αs(mτ )
π

∼ (
0.5 GeV
mτ

)2

)
. The a, b,

and c can be determined from the data [63] by fitting to moments
of the Π(s) and separately to the final states accessed by the vector
and axial parts of the W coupling. The values so extracted [64,65] are
consistent with the theoretical estimates. If the nonperturbative terms
are omitted from the fit, the extracted value of αs(mτ ) decreases by
∼ 0.02.

For αs(mτ ) = 0.35 the perturbative series for Rτ is Rτ ∼
3.058(1 + 0.112 + 0.064 + 0.036). The size (estimated error) of the
nonperturbative term is 20% (7%) of the size of the order α3

s term.
The perturbation series is not very well convergent; if the order α3

s
term is omitted, the extracted value of αs(mτ ) increases by 0.05. The
order α4

s term has been estimated [111] and attempts made to resum
the entire series [67,68]. These estimates can be used to obtain an
estimate of the errors due to these unknown terms [69,70]. We assign
an uncertainty of ±0.02 to αs(mτ ) from these sources.
Rτ can be extracted from the semi-leptonic branching ratio from

the relation Rτ = 1/(B(τ → eνν) − 1.97256; where B(τ → eνν) is
measured directly or extracted from the lifetime, the muon mass, and
the muon lifetime assuming universality of lepton couplings. Using
the average lifetime of 290.0± 1.2 fs and a τ mass of 1777.05± 0.29
MeV from the PDG fit gives Rτ = 3.655 ± 0.023. The direct
measurement of B(τ → eνν) can be combined with B(τ → µνν) to
give B(τ → eνν) = 0.1783± 0.0007 which gives Rτ = 3.636± 0.021.
Averaging these yields αs(mτ ) = 0.351± 0.008 using the experimental
error alone. We assign a theoretical error equal to 40% of the
contribution from the order α3 term and all of the nonperturbative
contributions. This then gives αs(mτ ) = 0.35 ± 0.03 for the final
result. This corresponds to αs(MZ) = 0.121± 0.003.

9.5. QCD in high-energy hadron collisions

There are many ways in which perturbative QCD can be tested in
high-energy hadron colliders. The quantitative tests are only useful
if the process in question has been calculated beyond leading order
in QCD perturbation theory. The production of hadrons with large
transverse momentum in hadron-hadron collisions provides a direct
probe of the scattering of quarks and gluons: qq → qq, qg → qg,
gg → gg, etc. Higher–order QCD calculations of the jet rates [71] and
shapes are in impressive agreement with data [72]. This agreement
has led to the proposal that these data could be used to provide a
determination of αs [73]. A set of structure functions is assumed and

Tevatron collider data are fitted over a very large range of transverse
momenta, to the QCD prediction for the underlying scattering process
that depends on αs. The evolution of the coupling over this energy
range (40 to 250 GeV) is therefore tested in the analysis. CDF obtains
αs(MZ) = 0.1129± 0.0001 (stat.)± 0.0085 (syst.) [74]. Estimation of
the theoretical errors is not straightforward. The structure functions
used depend implicitly on αs and an iteration procedure must be
used to obtain a consistent result; different sets of structure functions
yield different correlations between the two values of αs. I estimate
an uncertainty of ±0.005 from examining the fits. Ref. 73 estimates
the error from unknown higher order QCD corrections to be ±0.005.
Combining these then gives. αs(MZ) = 0.113 ± 0.011. Data are
also available on the angular distribution of jets; these are also in
agreement with QCD expectations [75,76].

QCD corrections to Drell-Yan type cross sections (i.e., the
production in hadron collisions by quark-antiquark annihilation of
lepton pairs of invariant mass Q from virtual photons, or of real W or
Z bosons), are known [77]. These O(αs) QCD corrections are sizable
at small values of Q. The correction to W and Z production, as
measured in pp collisions at

√
s = 0.63 TeV and

√
s = 1.8 TeV, is of

order 30%. The NNLO corrections to this process are known [78].
The production of W and Z bosons and photons at large transverse

momentum can also be used to test QCD. The leading-order QCD
subprocesses are qq → γg and qg → γq. If the parton distributions
are taken from other processes and a value of αs assumed, then an
absolute prediction is obtained. Conversely, the data can be used to
extract information on quark and gluon distributions and on the value
of αs. The next-to-leading-order QCD corrections are known [79,80]
(for photons), and for W/Z production [81], and so a precision test
is possible. Data exist on photon production from the CDF and DØ
collaborations [82,83] and from fixed target experiments [84]. Detailed
comparisons with QCD predictions [85] may indicate an excess of
the data over the theoretical prediction at low value of transverse
momenta. although other authors [86] find smaller excesses.

The UA2 collaboration [87] extracted a value of αs(MW ) = 0.123±
0.018(stat.)±0.017(syst.) from the measured ratio RW =

σ(W + 1jet)
σ(W + 0jet)

.

The result depends on the algorithm used to define a jet, and the
dominant systematic errors due to fragmentation and corrections for
underlying events (the former causes jet energy to be lost, the latter
causes it to be increased) are connected to the algorithm. There is
also dependence on the parton distribution functions, and hence,
αs appears explicitly in the formula for RW , and implicitly in the
distribution functions. This result is not used in the final average.
Data from CDF and D0 on the W pt distribution [89] are in agreement
with QCD but are not able to determine αs with sufficient precision
to have any weight in a global average.

In the region of low pt, fixed order perturbation theory is not
applicable; one must sum terms of order αns lnn(pt/MW ) [88]. Data
from D0 [90] on the pt distribution of Z bosons agree well with these
predictions.

The production rates of b quarks in pp have been used to determine
αs [91]. The next-to-leading-order QCD production processes [92] have
been used. By selecting events where the b quarks are back-to-back in
azimuth, the next-to-leading-order calculation can be used to compare
rates to the measured value and a value of αs extracted. The errors
are dominated by the measurement errors, the choice of µ and M ,
and uncertainties in the choice of structure functions. The last were
estimated by varying the structure functions used. The result is
αs(MZ) = 0.113+0.009

−0.013.
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9.6. QCD in heavy-quarkonium decay

Under the assumption that the hadronic and leptonic decay widths
of heavy QQ resonances can be factorized into a nonperturbative
part—dependent on the confining potential—and a calculable pertur-
bative part, the ratios of partial decay widths allow measurements of
αs at the heavy-quark mass scale. The most precise data come from
the decay widths of the 1−− J/ψ(1S) and Υ resonances. The total
decay width of the Υ is predicted by perturbative QCD [93]

Rµ(Υ ) =
Γ(Υ → hadrons)
Γ(Υ → µ+µ−)

=
10(π2 − 9)α3

s(M)
9πα2

em

×
[

1 +
αs
π

(
−19.4 +

3β0

2

(
1.162 + ln

(2M
MΥ

)))]
.(9.16)

Data are available for the Υ , Υ ′, Υ ′′, and J/ψ. The result
is very sensitive to αs and the data are sufficiently precise
(Rµ(Υ ) = 32.5± 0.9) [94] that the theoretical errors will dominate.
There are theoretical corrections to this simple formula due to the
relativistic nature of the QQ system; v2/c2 ∼ 0.1 for the Υ . They are
more severe for the J/ψ. There are also nonperturbative corrections
of the form Λ2/M2

Υ ; again these are more severe for the J/ψ. A fit to
Υ , Υ ′, and Υ ′′ [95] gives αs(MZ) = 0.113± 0.001 (expt.). The results
from each state separately and also from the J/ψ are consistent with
each other. There is an uncertainty of order ±0.005 from the choice
of scale; the error from v2/c2 corrections is a little larger. The ratio

of widths
Υ → γgg

Υ → ggg
has been measured by the CLEO collaboration

who use it to determine αs(9.45 GeV) = 0.163± 0.002± 0.014 [97]
which corresponds to αs(MZ) = 0.110 ± 0.001 ± 0.007. The error
is dominated by theoretical uncertainties associated with the scale
choice. The theoretical uncertainties due to the production of
photons in fragmentation [96] are small [97]. Higher order QCD
calculations of the photon energy distribution are available [98];
this distribution could now be used to further test the theory. The
width Γ(Υ → e+e−) can also be used to determine αs by using

moments of the quantity Rb(s) =
σ(e+e− → bb)

σ(e+e− → µ+µ−)
defined by

Mn =
∫∞
0

Rb(s)
sn+1 [99]. At large values of n, Mn is dominated by

Γ(Υ → e+e−). Higher order corrections are available and the method
gives [100] αs(mb) = 0.220± 0.027. The dominant error is theoretical
and is dominated by the choice of scale and by uncertainties in Coulomb
corrections. It corresponds to αs(MZ) = 0.119± 0.008. These various
Υ measurements can be combined and give αs(MZ) = 0.114± 0.008.

9.7. Perturbative QCD in e+e− collisions

The total cross section for e+e− → hadrons is obtained (at low
values of

√
s) by multiplying the muon-pair cross section by the factor

R = 3Σqe2
q . The higher-order QCD corrections to this quantity have

been calculated, and the results can be expressed in terms of the
factor:

R = R(0)
[
1 +

αs
π

+ C2

(αs
π

)2
+ C3

(αs
π

)3
+ · · ·

]
, (9.17)

where C2 = 1.411 and C3 = −12.8 [101].
R(0) can be obtained from the formula for dσ/dΩ for e+e− → ff

by integrating over Ω. The formula is given in Sec. 35.2 of this Review.
This result is only correct in the zero-quark-mass limit. The O(αs)
corrections are also known for massive quarks [102]. The principal
advantage of determining αs from R in e+e− annihilation is that there
is no dependence on fragmentation models, jet algorithms, etc.

A measurement by CLEO [103] at
√
s = 10.52 GeV yields

αs(10.52 GeV) = 0.20± 0.01± 0.06, which corresponds to αs(MZ) =
0.13 ± 0.005 ± 0.03. A comparison of the theoretical prediction
of Eq. (9.17) (corrected for the b-quark mass), with all the
available data at values of

√
s between 20 and 65 GeV, gives [104]

αs(35 GeV) = 0.146 ± 0.030 . The size of the order α3
s term

is of order 40% of that of the order α2
s and 3% of the order

αs. If the order α3
s term is not included, a fit to the data yields

αs (34 GeV) = 0.142±0.03, indicating that the theoretical uncertainty
is smaller than the experimental error.

Measurements of the ratio of hadronic to leptonic width of the Z
at LEP and SLC, Γh/Γµ probe, the same quantity as R. Using the
average of Γh/Γµ = 20.783±0.029 gives αs(MZ) = 0.123±0.004 [105].
There are theoretical errors arising from the values of top-quark and
Higgs masses which enter due to electroweak corrections to the Z
width and from the choice of scale.

While this method has small theoretical uncertainties from QCD
itself, it relies sensitively on the electroweak couplings of the Z
to quarks [106]. The presence of new physics which changes these
couplings via electroweak radiative corrections would invalidate the
value of αs(MZ). However, given the excellent agreement [107] of the
many measurements at the Z, there is no reason not to use the value
of αs(MZ) = 0.1192± 0.0028± 0.002(scale) from the global fits of
the various precision measurements at LEP/SLC and the W and top
masses in the world average (see the section on “Electroweak model
and constraints on new physics,” Sec. 10 of this Review).

An alternative method of determining αs in e+e− annihilation is
from measuring quantities that are sensitive to the relative rates of
two-, three-, and four-jet events. A review should be consulted for
more details [108] of the issues mentioned briefly here. In addition to
simply counting jets, there are many possible choices of such “shape
variables”: thrust [109], energy-energy correlations [110], average jet
mass, etc. All of these are infrared safe, which means they can be
reliably calculated in perturbation theory. The starting point for all
these quantities is the multijet cross section. For example, at order
αs, for the process e+e− → qqg: [111]

1
σ

d2σ

dx1dx2
=

2αs
3π

x2
1 + x2

2

(1− x1)(1− x2)
, (9.18)

xi =
2Ei√
s

(9.19)

where xi are the center-of-mass energy fractions of the final-state
(massless) quarks. A distribution in a “three-jet” variable, such as
those listed above, is obtained by integrating this differential cross
section over an appropriate phase space region for a fixed value of
the variable. The order α2

s corrections to this process have been
computed, as well as the 4-jet final states such as e+e− → qqgg [112].

There are many methods used by the e+e− experimental groups
to determine αs from the event topology. The jet-counting algorithm,
originally introduced by the JADE collaboration [113], has been used
by many other groups. Here, particles of momenta pi and pj are
combined into a pseudo-particle of momentum pi + pj if the invariant
mass of the pair is less than y0

√
s. The process is then iterated until

no more pairs of particles or pseudo-particles remain. The remaining
number is then defined to be the number of jets in the event, and
can be compared to the QCD prediction. The Durham algorithm is
slightly different: in computing the mass of a pair of partons, it uses
M2 = 2min(E2

1 , E
2
2)(1 − cos θij) for partons of energies Ei and Ej

separated by angle θij [114].

There are theoretical ambiguities in the way this process is carried
out. Quarks and gluons are massless, whereas the observed hadrons
are not, so that the massive jets that result from this scheme
cannot be compared directly to the massless jets of perturbative
QCD. Different recombination schemes have been tried, for example
combining 3-momenta and then rescaling the energy of the cluster
so that it remains massless. These schemes result in the same data
giving a slightly different values [115,116] of αs. These differences
can be used to determine a systematic error. In addition, since what
is observed are hadrons rather than quarks and gluons, a model is
needed to describe the evolution of a partonic final state into one
involving hadrons, so that detector corrections can be applied. The
QCD matrix elements are combined with a parton-fragmentation
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model. This model can then be used to correct the data for a direct
comparison with the parton calculation. The different hadronization
models that are used [117–120] model the dynamics that are controlled
by nonperturbative QCD effects which we cannot yet calculate. The
fragmentation parameters of these Monte Carlos are tuned to get
agreement with the observed data. The differences between these
models contribute to the systematic errors. The systematic errors
from recombination schemes and fragmentation effects dominate over
the statistical and other errors of the LEP/SLD experiments.

The scale M at which αs(M) is to be evaluated is not clear.
The invariant mass of a typical jet (or

√
sy0) is probably a more

appropriate choice than the e+e− center-of-mass energy. While there
is no justification for doing so, if the value is allowed to float in the
fit to the data, the fit improves and the data tend to prefer values
of order

√
s/10 GeV for some variables [116,121]; the exact value

depends on the variable that is fitted.

The perturbative QCD formulae can break down in special
kinematical configurations. For example, the thrust (T ) distribution
contains terms of the type αs ln2(1 − T ). The higher orders in the
perturbation expansion contain terms of order αns lnm(1 − T ). For
T ∼ 1 (the region populated by 2-jet events), the perturbation
expansion is unreliable. The terms with n ≤ m can be summed to all
orders in αs [122]. If the jet recombination methods are used higher-
order terms involve αns lnm(y0), these too can be resummed [123]. The
resummed results give better agreement with the data at large values
of T . Some caution should be exercised in using these resummed
results because of the possibility of overcounting; the showering
Monte Carlos that are used for the fragmentation corrections also
generate some of these leading-log corrections. Different schemes for
combining the order α2

s and the resummations are available [124].
These different schemes result in shifts in αs of order ±0.002. The use
of the resummed results improves the agreement between the data and
the theory. An average of the recent results at the Z resonance from
SLD [116], OPAL [125], L3 [126], ALEPH [127], and DELPHI [128],
using the combined α2

s and resummation fitting to a large set of shape
variables, gives αs(MZ) = 0.122 ± 0.007. The errors in the values
of αs(MZ) from these shape variables are totally dominated by the
theoretical uncertainties associated with the choice of scale, and the
effects of hadronization Monte Carlos on the different quantities fitted.

Similar studies on event shapes have been undertaken at lower
energies at TRISTAN, PEP/PETRA, and CLEO. A combined result
from various shape parameters by the TOPAZ collaboration gives
αs(58 GeV) = 0.125 ± 0.009, using the fixed order QCD result,
and αs(58 GeV) = 0.132 ± 0.008 (corresponding to αs(MZ) =
0.123 ± 0.007), using the same method as in the SLD and LEP
average [129]. The measurements of event shapes at PEP/PETRA are
summarized in earlier editions of this note. A recent reevaluation of
the JADE data [130] obtained using resummed QCD results and by
averaging over several shape variables gives αs(35 GeV) = 0.145+0.012

−0.007.
An analysis by the TPC group [131] gives αs(29 GeV) = 0.160±0.012,
using the same method as TOPAZ. This value corresponds to
αs(MZ) = 0.131± 0.010

The CLEO collaboration fits to the order α2
s results for the two

jet fraction at
√
s = 10.53 GeV, and obtains αs(10.93 GeV) =

0.164±0.004 (expt.)±0.014 (theory) [132]. The dominant systematic
error arises from the choice of scale (µ), and is determined from the
range of αs that results from fit with µ = 10.53 GeV, and a fit where
µ is allowed to vary to get the lowest χ2. The latter results in µ = 1.2
GeV. Since the quoted result corresponds to αs(1.2 GeV) = 0.35, it is
by no means clear that the perturbative QCD expression is reliable
and the resulting error should, therefore, be treated with caution. A
fit to many different variables as is done in the LEP/SLC analyses
would give added confidence to the quoted error.

Recently studies have been carried out at energies between
∼130 GeV [133] and ∼189 GeV [134]. These can be combined to give
αs(130 GeV) = 0.114 ± 0.008 and αs(189 GeV) = 0.1104 ± 0.005.
The dominant errors are theoretical and systematic and, as most of
these are in common at the two energies. These data and those at the

Z resonance provide clear confirmation of the expected decrease in αs
as the energy is increased.

Since the errors in the event shape measurements are dominantly
systematic, and are common to the experiments, the results from
PEP/PETRA, TRISTAN, LEP, SLC, and CLEO are combined to give
αs(MZ) = 0.121± 0.007. All of the experiments are consistent with
this average and, taken together, provide verification of the running of
the coupling constant with energy.

Estimates are available for the nonperturbative corrections to the
mean value of 1−T [136]. These are of order 1/E and involve a single
parameter to be determined from experiment. These corrections can
then be used as an alternative to those modeled by the fragmentation
Monte-Carlos. The DELPHI collaboration [135] uses data up to the Z
mass from many experiments and determines αs(MZ) = 0.119± 0.006,
the error being dominated by the choice of scale. The value is also
determined by a fit to a second variable (the mean jet mass); while the
extracted values of αs(MZ) are consistent with each other, the values
of the non perturbative parameter are not. The analysis is useful as
one can directly determine the size of the 1/E corrections; they are
approximately 20% (50%) of the perturbative result at

√
s = 91(11)

GeV.

9.8. Scaling violations in fragmentation functions

Measurements of the fragmentation function di(z,E), (the
probability that a hadron of type i be produced with energy zE in
e+e− collisions at

√
s = 2E) can be used to determine αs. As in

the case of scaling violations in structure functions, QCD predicts
only the E dependence. Hence, measurements at different energies
are needed to extract a value of αs. Because the QCD evolution
mixes the fragmentation functions for each quark flavor with the
gluon fragmentation function, it is necessary to determine each of
these before αs can be extracted. The ALEPH collaboration has
used data from energies ranging from

√
s = 22 GeV to

√
s = 91

GeV. A flavor tag is used to discriminate between different quark
species, and the longitudinal and transverse cross sections are
used to extract the gluon fragmentation function [137]. The result
obtained is αs(MZ) = 0.126± 0.007 (expt.) ± 0.006 (theory) [138].
The theory error is due mainly to the choice of scale. The OPAL
collaboration [139] has also extracted the separate fragmentation
functions. DELPHI [140] has also performed a similar analysis
using data from other experiments at lower energy with the result
αs(MZ) = 0.124±0.007±0.009 (theory). The larger theoretical error is
due to the larger range of scales that were used in the fit. These results
can be combined to give αs(MZ) = 0.125± 0.005± 0.008 (theory).

9.9. Photon structure functions

e+e− can also be used to study photon-photon interactions, which
can be used to measure the structure function of a photon [141], by
selecting events of the type e+e− → e+e− + hadrons which proceeds
via two photon scattering. If events are selected where one of the
photons is almost on mass shell and the other has a large invariant
mass Q, then the latter probes the photon structure function at scale
Q; the process is analogous to deep inelastic scattering where a highly
virtual photon is used to probe the proton structure. This process
was included in earlier versions of this Review which can be consulted
for details on older measurements [142–145]. A recent review of the
data can be found in Ref. 146. Data have become available from
LEP [147–150] and from TRISTAN [151,152] which extend the range
of Q2 to of order 300 GeV2 and x as low as 2 × 10−3and show
Q2 dependence of the structure function that is consistent with
QCD expectations. Experiments at HERA can also probe the photon
structure function by looking at jet production in γp collisions; this is
analogous to the jet production in hadron-hadron collisions which is
sensitive to hadron structure functions. The data [153] are consistent
with theoretical models [154].
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9.10. Jet rates in ep collisions

At lowest order in αs, the ep scattering process produces a final
state of (1+1) jets, one from the proton fragment and the other from
the quark knocked out by the process e + quark → e + quark. At
next order in αs, a gluon can be radiated, and hence a (2+1) jet final
state produced. By comparing the rates for these (1+1) and (2+1) jet
processes, a value of αs can be obtained. A NLO QCD calculation is
available [155]. The basic methodology is similar to that used in the
jet counting experiments in e+e− annihilation discussed above. Unlike
those measurements, the ones in ep scattering are not at a fixed value
of Q2. In addition to the systematic errors associated with the jet
definitions, there are additional ones since the structure functions enter
into the rate calculations. Results from H1 [156] and ZEUS [157] can
be combined to give αs(MZ) = 0.118± 0.0015 (stat.)± 0.009 (syst.).
The contributions to the systematic errors from experimental effects
(mainly the hadronic energy scale) are comparable to the theoretical
ones arising from scale choice, structure functions, and jet definitions.
The theoretical errors are common to the two measurements; therefore,
we have not reduced the systematic error after forming the average.

9.11. QCD in diffractive events

In approximately 10% of the deep-inelastic scattering events at
HERA a rapidity gap is observed [158]; that is events are seen
where there are almost no hadrons produced in the direction of the
incident proton. This was unexpected; QCD based models of the
final state predicted that the rapidity interval between the quark that
is hit by the electron and the proton remnant should be populated
approximately evenly by the hadrons. Similar phenomena have been
observed at the Tevatron in W and jet production. For a review see
Ref. 159.

9.12. Lattice QCD

Lattice gauge theory calculations can be used to calculate,
using non-perturbative methods, a physical quantity that can be
measured experimentally. The value of this quantity can then be
used to determine the QCD coupling that enters in the calculation.
For a review of the methodology see Ref. 160. For example, the
energy levels of a QQ system can be determined and then used
to extract αs. The masses of the QQ states depend only on the
quark mass and on αs. A limitation is that calculations cannot be
performed for three light quark flavors. Results are available for
zero (nf = 0, quenched approximation) and two light flavors, which
allow extrapolation to three. The coupling constant so extracted
is in a lattice renormalization scheme, and must be converted
to the MS scheme for comparison with other results. Using the
mass differences of Υ and Υ ′ and Υ ′′ and χb, Davies et al. [161]
extract a value of αs(MZ) = 0.1174± 0.0024. A similar result with
larger errors is reported by [162], where results are consistent with
αs(MZ) = 0.111 ± 0.006. The SESAM collaboration [163] uses the
Υ and Υ ′ and χb masses to obtain αs(MZ) = 0.1118 ± 0.0017
using Wilson fermions. These authors point out that their result is
more than 3σ from that of Davies et al. which uses Kogut-Susskind
fermions. A combination of the results from quenched [164] and
(nf = 2) [165] gives αs(MZ) = 0.116± 0.003 [166]. Calculations [167]
using the strength of the force between two heavy quarks computed
in the quenched approximation obtains a value of αs(5 GeV) that is
consistent with these results. There have also been investigations of
the running of αs [168]. These show remarkable agreement with the
two loop perturbative result of Eq. (9.5).

There are several sources of error in these estimates of αs(MZ).
The experimental error associated with the measurements of the
particle masses is negligible. The conversion from the lattice coupling
constant to the MS constant is obtained using a perturbative expansion
where one coupling expanded as a power series in the other. This
series is only known to second order. A third order calculation exists
only from the nf = 0 case [169]. Its inclusion leads to a shift in
the extracted value of αs(MZ) of +0.002. Other theoretical errors
arising from the limited statistics of the Monte-Carlo calculation,
extrapolation in nf , and corrections for light quark masses are smaller
than this.

The result of averaging [163,161,164] gives with a more conservative
error αs(MZ) = 0.115± 0.003. This will be used in the average.
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Figure 9.2: Summary of the values of αs(µ) at the values of
µ where they are measured. The lines show the central values
and the ±1σ limits of our average. The figure clearly shows the
decrease in αs(µ) with increasing µ. The data are, in increasing
order of µ, τ width, deep inelastic scattering, Υ decays, e+e−

event rate at 25 GeV, event shapes at TRISTAN, Z width, e+e−

event shapes of MZ , 135, and 189 GeV.

9.13. Conclusions

The need for brevity has meant that many other important topics
in QCD phenomenology have had to be omitted from this review. One
should mention in particular the study of exclusive processes (form
factors, elastic scattering, . . .), the behavior of quarks and gluons in
nuclei, the spin properties of the theory, and QCD effects in hadron
spectroscopy.

We have focused on those high-energy processes which currently
offer the most quantitative tests of perturbative QCD. Figure 9.1
shows the values of αs(MZ) deduced from the various experiments.
Figure 9.2 shows the values and the values of Q where they are
measured. This figure clearly shows the experimental evidence for the
variation of αs(Q) with Q.

An average of the values in Fig. 9.1 gives αs(Mz) = 0.1181, with
a total χ2 of 3.8 for twelve fitted points, showing good consistency
among the data. The error on the average, assuming that all of the
errors in the contributing results are uncorrelated, is ±0.0014, and
may be an underestimate. Almost all of the values used in the average
are dominated by systematic, usually theoretical, errors. Only some
of these, notably from the choice of scale, are correlated. The average
is not dominated by a single measurement; there are several results
with comparable small errors: these are the ones from τ decay, lattice
gauge theory, deep inelastic scattering, and the Z0 width. We quote
our average value as αs(MZ) = 0.1181± 0.002, which corresponds
to Λ(5) = 208+25

−23 MeV using Eq. (9.5a). Future experiments can be
expected to improve the measurements of αs somewhat. Precision at
the 1% level may be achievable if the systematic and theoretical errors
can be reduced [170].

The value of αs at any scale corresponding to our average can be ob-
tained from http://www-theory.lbl.gov/∼ianh/alpha/alpha.html



92 9. Quantum chromodynamics

References:

1. R.K. Ellis, W.J. Stirling, and B.R. Webber, “QCD and Collider
Physics” (Cambridge 1996).

2. For reviews see, for example, A.S. Kronfeld and P.B. Mackenzie,
Ann. Rev. Nucl. and Part. Sci. 43, 793 (1993);
H. Wittig, Int. J. Mod. Phys. A12, 4477 (1997).

3. For example see, S. Bethke, in Proceedings of the IVth Int.
Symposium on Radiative Corrections, Barcelona, Spain (Sept.
1998), hep-ex/9812026;
M Davier, 33rd Rencontres de Moriond: Electroweak Interactions
and Unified Theories, Les Arcs, France (14–21 Mar. 1998);
P.N. Burrows, Acta. Phys. Pol. 28, 701 (1997).

4. J. Womersley, International Conference on Lepton Photon
Interactions, Stanford, USA (Aug. 1999).

5. S.A. Larin, T. van Ritbergen, and J.A.M. Vermaseren, Phys.
Lett. B400, 379 (1997).

6. W.A. Bardeen et al., Phys. Rev. D18, 3998 (1978).
7. G. Grunberg, Phys. Lett. 95B, 70 (1980); Phys. Rev. D29, 2315

(1984).
8. P.M. Stevenson, Phys. Rev. D23, 2916 (1981); and Nucl. Phys.

B203, 472 (1982).
9. S. Brodsky and H.J. Lu, SLAC-PUB-6389 (Nov. 1993).

10. S. Brodsky, G.P. Lepage, and P.B. Mackenzie, Phys. Rev. D28,
228 (1983).

11. M.A. Samuel, G. Li, and E. Steinfelds, Phys. Lett. B323, 188
(1994);
M.A. Samuel, J. Ellis, and M. Karliner, Phys. Rev. Lett. 74, 4380
(1995).

12. J. Ellis et al., Phys. Rev. D54, 6986 (1996).
13. P.N. Burrows et al., Phys. Lett. B382, 157 (1996).
14. P. Abreu et al., Z. Phys. C54, 55 (1992).
15. A.H. Mueller, Phys. Lett. B308, 355, (1993).
16. W. Bernreuther, Annals of Physics 151, 127 (1983); Erratum

Nucl. Phys. B513, 758 (1998);
S.A. Larin, T. van Ritbergen, and J.A.M. Vermaseren, Nucl.
Phys. B438, 278 (1995).

17. K.G. Chetyrkin, B.A. Kniehl, and M. Steinhauser, Phys. Rev.
Lett. 79, 2184 (1977).

18. W. Marciano, Phys. Rev. D29, 580 (1984).
19. V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972);

Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
20. G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
21. G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys. B175, 27

(1980);
W. Furmanski and R. Petronzio, Phys. Lett. 97B, 437 (1980);
and Z. Phys. C11, 293 (1982);
E.G. Floratos, C. Kounnas, and R. Lacaze, Phys. Lett. 98B, 89
(1981); Phys. Lett. 98B, 285 (1981); and Nucl. Phys. B192, 417
(1981);
R.T. Herrod and S. Wada, Phys. Lett. 96B, 195 (1981); and
Z. Phys. C9, 351 (1981).

22. G. Sterman, Nucl. Phys. B281, 310 (1987);
S. Catani and L. Trentadue, Nucl. Phys. B327, 323 (1989); Nucl.
Phys. B353, 183 (1991).

23. R.D. Ball and A. DeRoeck, hep-ph/9609309.
24. J. Feltesse, in Proceedings of the XXVII International Conference

on High Energy Physics, Glasgow, Scotland, (July 1994).
25. M Klein at International Conference on Lepton Photon Interac-

tions , Stanford, USA (August 1999).
26. F. Eisele, at the European Physical Society meeting, Brussels,

(July 1995).

27. M. Derrick et al., Phys. Lett. B345, 576 (1995); Z. Phys. C62,
399 (1999);
S. Aid et al., Phys. Lett. B354, 494 (1995); Nucl. Phys. B470, 3
(1996).

28. D. Gross and C.H. Llewellyn Smith, Nucl. Phys. B14, 337 (1969).
29. J. Chyla and A.L. Kataev, Phys. Lett. B297, 385 (1992).
30. S.A. Larin and J.A.M. Vermaseren, Phys. Lett. B259, 345 (1991).
31. A.L. Kataev and V.V. Starchenko, Mod. Phys. Lett. A10, 235

(1995).
32. V.M. Braun and A.V. Kolesnichenko, Nucl. Phys. B283, 723

(1987).
33. M. Dasgupta and B. Webber, Phys. Lett. B382, 273 (1993).
34. M. Maul et al., Phys. Lett. 401, 100 (1997).
35. J. Kim et al., Phys. Rev. Lett. 81, 3595 (1998).

36. D. Allasia et al., Z. Phys. C28, 321 (1985);
K. Varvell et al., Z. Phys. C36, 1 (1997);
V.V. Ammosov et al., Z. Phys. C30, 175 (1986);
P.C. Bosetti et al., Nucl. Phys. B142, 1 (1978).

37. A.L. Kataev et al., Nucl. Phys. A666 & 667, 184 (2000)
hep-ph/9907310.

38. L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).
39. A.C. Benvenuti et al., Phys. Lett. B223, 490 (1989); Phys. Lett.

B223, 485, (1989); Phys. Lett. B237, 592 (1990); and Phys. Lett.
B237, 599 (1990).

40. M.R. Adams et al., Phys. Rev. D54, 3006 (1996).
41. J. Santiago and F.J. Yndurain, Nucl. Phys. B563, 45 (1999)

hep-ph/9904344.
42. K. Adel, F. Barriero, and F.J. Yndurain, Nucl. Phys. B495, 221

(1997);
W.L. Van Neerven, and E.B. Zijlstra, Phys. Lett. B272, 127
(1991); Nucl. Phys. B383, 525 (1992);
S. A. Larin et al., Nucl. Phys. B427, 41 (1994); Nucl. Phys.
B492, 338 (1997).

43. M. Arneodo et al., Phys. Lett. B309, 222 (1993).
44. M. Virchaux and A. Milsztajn, Phys. Lett. B274, 221 (1992).

45. P.Z. Quintas, Phys. Rev. Lett. 71, 1307 (1993).
46. B. Adeva et al., Phys. Rev. D58, 112002 (1998).
47. G. Altarelli et al., Nucl. Phys. B496, 337 (1997), hep-

ph/9803237.
48. D. Adams et al., Phys. Lett. B329, 399 (1995); Phys. Rev. D56,

5330 (1998); Phys. Rev. D58, 1112001 (1998).
49. K. Abe et al., Phys. Rev. Lett. 74, 346 (1995); Phys. Lett. B364,

61 (1995); Phys. Rev. Lett. 75, 25 (1995);
P.L. Anthony et al., Phys. Rev. D54, 6620 (1996).

50. A. Airapetian et al., Phys. Lett. B442, 484 (1998), hep-ex/99-
06035.

51. J.D. Bjorken, Phys. Rev. 148, 1467 (1966).
52. J. Ellis and M. Karliner, Phys. Lett. B341, 397 (1995).
53. A. DeRujula et al., Phys. Rev. D10, 1669 (1974);

E.A. Kurayev, L.N. Lipatov, and V.S. Fadin, Sov. Phys. JETP
45, 119 (1977);
Ya.Ya. Balitsky and L.N. Lipatov, Sov. J. Nucl. Phys. 28, 882
(1978).

54. R.D. Ball and S. Forte, Phys. Lett. B335, 77 (1994); Phys. Lett.
B336, 77 (1994);
H1Collaboration: S. Aid et al., Nucl. Phys. B470, 3 (1996).

55. R.D. Ball and S. Forte, hep-ph/9607289.
56. H1 Collaboration: T. Ahmed et al., Nucl. Phys. B439, 471

(1995).
57. S. Catani and F. Hautmann, Nucl. Phys. B427, 475 (1994).
58. H. Plothow-Besch, Comp. Phys. Comm. 75, 396 (1993).



9. Quantum chromodynamics 93

59. H.L. Lai et al., Eur. Phys. J. C12, 375 (2000) hep-ph/9903282;
A.D. Martin et al., Nucl. Phys. B Proc. Suppl. 79, 105 (1999)
hep-ph/9906231.

60. M.A. Shifman, A.I Vainshtein, and V.I. Zakharov, Nucl. Phys.
B147, 385 (1979).

61. S. Narison and A. Pich, Phys. Lett. B211, 183 (1988);
E. Braaten, S. Narison, and A. Pich, Nucl. Phys. B373, 581
(1992).

62. M. Neubert, Nucl. Phys. B463, 511 (1996).
63. F. Le Diberder and A. Pich, Phys. Lett. B289, 165 (1992).
64. R. Barate et al., Z. Phys. C76, 1 (1997); Z. Phys. C76, 15 (1997);

K. Ackerstaff et al., Eur. Phys. J. C7, 571 (1999).
65. T. Coan et al., Phys. Lett. B356, 580 (1995).
66. A.L. Kataev and V.V. Starshenko, Mod. Phys. Lett. A10, 235

(1995).
67. F. Le Diberder and A. Pich, Phys. Lett. B286, 147 (1992).
68. C.J. Maxwell and D.J. Tong, Nucl. Phys. B481, 681 (1996).
69. G. Altarelli, Nucl. Phys. B40, 59 (1995);

G. Altarelli, P. Nason, and G. Ridolfi, Z. Phys. C68, 257 (1995).
70. S. Narison, Nucl. Phys. B40, 47 (1995).
71. S.D. Ellis, Z. Kunszt, and D.E. Soper, Phys. Rev. Lett. 64, 2121

(1990);
F. Aversa et al., Phys. Rev. Lett. 65, 401 (1990);
W.T. Giele, E.W.N. Glover, and D. Kosower, Phys. Rev. Lett.
73, 2019 (1994);
S. Frixione, Z. Kunszt, and A. Signer, Nucl. Phys. B467, 399
(1996).

72. F. Abe et al., Phys. Rev. Lett. 77, 438 (1996);
B. Abbott et al., Phys. Rev. Lett. 82, 2451 (1999).

73. W.T. Giele, E.W.N. Glover, and J. Yu, Phys. Rev. D53, 120
(1996).

74. CDF Collaboration reported in [4].
75. UA1 Collaboration: G. Arnison et al., Phys. Lett. B177, 244

(1986).
76. F. Abe et al., Phys. Rev. Lett. 77, 533 (1996);

ibid., erratum Phys. Rev. Lett. 78, 4307 (1997);
B. Abbott, Phys. Rev. Lett. 80, 666 (1998);
S. Abache et al., Phys. Rev. D53, 6000 (1996).

77. G. Altarelli, R.K. Ellis, and G. Martinelli, Nucl. Phys. B143, 521
(1978).

78. R. Hamberg, W.L. Van Neerven, and T. Matsuura, Nucl. Phys.
B359, 343 (1991).

79. P. Aurenche, R. Baier, and M. Fontannaz, Phys. Rev. D42, 1440
(1990);
P. Aurenche et al., Phys. Lett. 140B, 87 (1984);
P. Aurenche et al., Nucl. Phys. B297, 661 (1988).

80. H. Baer, J. Ohnemus, and J.F. Owens, Phys. Lett. B234, 127
(1990).

81. H. Baer and M.H. Reno, Phys. Rev. D43, 2892 (1991);
P.B. Arnold and M.H. Reno, Nucl. Phys. B319, 37 (1989).

82. F. Abe et al., Phys. Rev. Lett. 73, 2662 (1994).
83. S. Abachi et al., Phys. Rev. Lett. 77, 5011 (1996).
84. G. Alverson et al., Phys. Rev. D48, 5 (1993).
85. L. Apanasevich et al., Phys. Rev. D59, 074007 (1999); Phys. Rev.

Lett. 81, 2642 (1998).
86. W. Vogelsang and A. Vogt, Nucl. Phys. B453, 334 (1995);

P. Aurenche et al., Eur. Phys. J. C9, 107 (1999).
87. J. Alitti et al., Phys. Lett. B263, 563 (1991).
88. R. K . Ellis and S. Veseli, Nucl. Phys. B511, 649 (1998);

C.T. Davies, B.R. Webber, and W.J. Stirling, Nucl. Phys. B256,
413 (1985).

89. S. Abache et al., Phys. Rev. Lett. 75, 3226 (1995);
J. Womersley, private communication;
J. Huston, in the Proceedings to the 29th International Conference
on High-Energy Physics (ICHEP98), Vancouver, Canada (23–29
Jul 1998) hep-ph/9901352.

90. DØ Collaboration: B. Abbott et al., Phys. Rev. D61, 032004
(2000) hep-ex/9907009;
T. Affolder et al., FERMILAB-PUB-99/220.

91. C. Albajar et al., Phys. Lett. B369, 46 (1996).
92. M.L. Mangano, P. Nason, and G. Ridolfi, Nucl. Phys. B373, 295

(1992).
93. R. Barbieri et al., Phys. Lett. 95B, 93 (1980);

B.P. Mackenzie and G.P. Lepage, Phys. Rev. Lett. 47, 1244
(1981).

94. M. Kobel et al., Z. Phys. C53, 193 (1992).
95. M. Kobel, DESY-F31-91-03 (thesis).
96. S. Catani and F. Hautmann, Nucl. Phys. B (Proc. Supp.),

vol. 39BC, 359 (1995).
97. B. Nemati et al., Phys. Rev. D55, 5273 (1997).
98. M. Kramer, Phys. Rev. D60, 111503 (1999) hep-ph/9904416.
99. M. Voloshin, Int. J. Mod. Phys. A10, 2865 (1999).

100. M. Jamin and A. Pich, Nucl. Phys. B507, 334 (1997).
101. S.G. Gorishny, A. Kataev, and S.A. Larin, Phys. Lett. B259, 114

(1991);
L.R. Surguladze and M.A. Samuel, Phys. Rev. Lett. 66, 560
(1991).

102. K.G. Chetyrkin and J.H. Kuhn, Phys. Lett. B308, 127 (1993).
103. R. Ammar et al., Phys. Rev. D57, 1350 (1998).
104. D. Haidt, in Directions in High Energy Physics, vol. 14, p. 201,

ed. P. Langacker (World Scientific, 1995).
105. G. Quast, presented at the International Europhysics Conference

on High Energy Physics, EPS-HEP99, Tampere, Finland (July
1999).

106. A. Blondel and C. Verzegrassi, Phys. Lett. B311, 346 (1993);
G. Altarelli et al., Nucl. Phys. B405, 3 (1993).

107. See the section on “Standard Model of Electroweak Interactions”
(Sec. 10) in this Review.

108. S. Bethke and J. Pilcher, Ann. Rev. Nucl. and Part. Sci. 42, 251
(1992).

109. E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).
110. C.L. Basham et al., Phys. Rev. D17, 2298 (1978).
111. J. Ellis, M.K. Gaillard, and G. Ross, Nucl. Phys. B111, 253

(1976);
ibid., erratum Nucl. Phys. B130, 516 (1977);
P. Hoyer et al., Nucl. Phys. B161, 349 (1979).

112. R.K. Ellis, D.A. Ross, T. Terrano, Phys. Rev. Lett. 45, 1226
(1980);
Z. Kunszt and P. Nason, ETH-89-0836 (1989).

113. S. Bethke et al., Phys. Lett. B213, 235 (1988).
114. S. Bethke et al., Nucl. Phys. B370, 310 (1992).
115. M.Z. Akrawy et al., Z. Phys. C49, 375 (1991).
116. K. Abe et al., Phys. Rev. Lett. 71, 2578 (1993); Phys. Rev. D51,

962 (1995).
117. B. Andersson et al., Phys. Reports 97, 33 (1983).
118. A. Ali et al., Nucl. Phys. B168, 409 (1980);

A. Ali and R. Barreiro, Phys. Lett. 118B, 155 (1982).
119. B.R. Webber, Nucl. Phys. B238, 492 (1984);

G. Marchesini et al., Phys. Comm. 67, 465 (1992).
120. T. Sjostrand and M. Bengtsson, Comp. Phys. Comm. 43, 367

(1987);
T. Sjostrand, CERN-TH-7112/93 (1993).



94 9. Quantum chromodynamics

121. O. Adriani et al., Phys. Lett. B284, 471 (1992);
M. Akrawy et al., Z. Phys. C47, 505 (1990);
B. Adeva et al., Phys. Lett. B248, 473 (1990);
D. Decamp et al., Phys. Lett. B255, 623 (1991).

122. S. Catani et al., Phys. Lett. B263, 491 (1991).
123. S. Catani et al., Phys. Lett. B269, 432 (1991);

S. Catani, B.R. Webber, and G. Turnock, Phys. Lett. B272, 368
(1991);
N. Brown and J. Stirling, Z. Phys. C53, 629 (1992).

124. G. Catani et al., Phys. Lett. B269, 632 (1991); Phys. Lett. B295,
269 (1992); Nucl. Phys. B607, 3 (1993); Phys. Lett. B269, 432
(1991).

125. P.D. Acton et al., Z. Phys. C55, 1 (1992); Z. Phys. C58, 386
(1993).

126. O. Adriani et al., Phys. Lett. B284, 471 (1992).
127. D. Decamp et al., Phys. Lett. B255, 623 (1992); Phys. Lett.

B257, 479 (1992).
128. P. Abreu et al., Z. Phys. C59, 21 (1993);

M. Acciarri et al., Phys. Lett. B404, 390 (1997).
129. Y. Ohnishi et al., Phys. Lett. B313, 475 (1993).
130. P.A. Movilla Fernandez et al., Eur. Phys. J. C1, 461 (1998);

O. Biebel et al., Phys. Lett. B459, 326 (1999).
131. D.A. Bauer et al., SLAC-PUB-6518.
132. L. Gibbons et al., CLNS 95-1323 (1995).
133. DELPHI Collaboration: D. Buskulic et al., Z. Phys. C73, 409

(1997); Z. Phys. C73, 229 (1997).
134. ALEPH Collaboration: 99-023 (1999); DELPHI Collaboration:

99-114 (1999); L3 Collaboration: L3-2414 (1999); OPAL
Collaboration, PN-403 (1999); all submitted to International
Conference on Lepton Photon Interactions,Stanford, USA (Aug.
1999);
OPAL Collaboration: M. Acciarri et al., Phys. Lett. B371, 137
(1996); Z. Phys. C72, 191 (1996);
K. Ackerstaff et al., Z. Phys. C75, 193 (1997);
ALEPH Collaboration: ALEPH 98-025 (1998).

135. DELPHI Collaboration: Phys. Lett. B456, 322 (1999).
136. Y.L. Dokshitzer and B.R. Webber Phys. Lett. B352, 451 (1995);

Y.L. Dokshitzer et. al. Nucl. Phys. B511, 396 (1997);
Y.L. Dokshitzer et. al. JHEP 9801,011 (1998).

137. P. Nason and B.R. Webber, Nucl. Phys. B421, 473 (1994).
138. D. Buskulic et al., Phys. Lett. B357, 487 (1995);

ibid., erratum Phys. Lett. B364, 247 (1995).
139. OPAL Collaboration: R. Akers et al., Z. Phys. C68, 203 (1995).
140. DELPHI Collaboration: P. Abreu et al., Phys. Lett. B398, 194

(1997).
141. E. Witten, Nucl. Phys. B120, 189 (1977).
142. C. Berger et al., Nucl. Phys. B281, 365 (1987).

143. H. Aihara et al., Z. Phys. C34, 1 (1987).
144. M. Althoff et al., Z. Phys. C31, 527 (1986).
145. W. Bartel et al., Z. Phys. C24, 231 (1984).
146. J. Butterworth, International Conference on Lepton Photon

Interactions, Stanford, USA (Aug. 1999).
147. K. Ackerstaff et al., Phys. Lett. B412, 225 (1997); Phys. Lett.

B411, 387 (1997).
148. R. Barate et al., Phys. Lett. B458, 152 (1999).
149. M. Acciarri et al., Phys. Lett. B436, 403 (1998).
150. P. Abreu et al., Z. Phys. C69, 223 (1996).
151. K. Muramatsu et al., Phys. Lett. B332, 477 (1994).
152. S.K. Sahu et al., Phys. Lett. B346, 208 (1995).
153. H1 Collaboration: C. Adloff et al., Eur. Phys. J. C13, 397 (2000)

DESY-98-205;
J.Breitweg et al., Eur. Phys. J. C11, 35 (1999) DESY 99-057.

154. S. Frixone, Nucl. Phys. B507, 295 (1997);
B.W. Harris and J.F. Owens, Phys. Rev. D56, 4007 (1997);
M. Klasen and G. Kramr, Z. Phys. C72, 107 (1996).

155. D. Graudenz, Phys. Rev. D49, 3921 (1994) hep-ph/9708362;
J.G. Korner, E. Mirkes, and G.A. Schuler, Int. J. Mod. Phys. A4,
1781, (1989);
S. Catani and M. Seymour, Nucl. Phys. B485, 291 (1997);
M. Dasgupta and B.R. Webber, Eur. Phys. J. C1, 539 (1998)
hep-ph/9704297;
E. Mirkes and D. Zeppenfeld, Phys. Lett. B380, 205 (1996).

156. H1 Collaboration: T. Ahmed et al., Phys. Lett. B346, 415
(1995); Eur. Phys. J. C5, 575 (1998).

157. ZEUS Collaboration: M. Derrick et al., Phys. Lett. B363, 201
(1995).

158. M.Derrick et al., Phys. Lett. B, 369 (1996);
H1 Collaboration: T. Ahmed et al., Nucl. Phys. B435, 3 (1995).

159. D.M. Janson, M. Albrow, and R. Brugnera hep-ex/9905537.
160. P Weisz, Nucl. Phys. B (Proc. Supp.) 47, 71 (1996).
161. C.T.H. Davies et al., Phys. Rev. D56, 2755 (1997).
162. S. Aoki et al., Phys. Rev. Lett. 74, 222 (1995).
163. A. Spitz et al., Phys. Rev. D60, 074502 (1999) hep-lat/9906009.
164. A.X. El-Khadra et al., Phys. Rev. Lett. 69, 729 (1992);

A.X. El-Khadra et al., FNAL 94-091/T (1994);
A.X. El-Khadra et al., hep-ph/9608220.

165. S. Collins et al., cited by [166].
166. J. Shigemitsu, Nucl. Phys. B (Proc. Supp.) 53, 16 (1997).
167. G.S Bali and K. Schilling, Phys. Rev. D47, 661 (1973);

S.P. Booth et al., Phys. Lett. B294, 38 (1992).
168. G. de Divitiis et al., Nucl. Phys. B437, 447 (1995);

M. Luscher et al., Nucl. Phys. B413, 481 (1994).
169. M. Luscher and P. Weisz, Nucl. Phys. B452, 234 (1995).
170. P.N. Burrows et al., in Proceedings of 1996 DPF/DPB Snowmass

Summer Study, ed. D. Cassel et al., (1997).


